Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514609

RESUMO

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Animais , Humanos , Camundongos , Mesocricetus , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/genética , Imunização , Glicoproteínas , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Heliyon ; 10(5): e26565, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439850

RESUMO

Culex pipiens (Linnaeus, 1758) mosquitoes search plant sources of sugars to cope with the energetic demand of various physiological processes. The crop as part of the digestive system is devoted to the storage of sugar-based meal obtained from various nectars sources. The profiling of sugars and metabolites in the Culex pipiens' crop is scarce, and only few studies used Liquid Chromatography - Mass Spectrometry (LC-MS), which provides broad detection for biomonitoring environmental substances and even contaminants in the sugar diet of mosquitoes populations. Therefore, sugar and metabolite profiling were performed on crops obtained from mosquitoes exposed to plant nectar under laboratory or natural conditions by Ultra High-Performance LC-MS (UHPLC-MS). This method allowed us a precise quantitative and qualitative identification of sugar diet and associated environmental compounds in the crop of the mosquito C. pipiens. Under laboratory condition, mosquitoes were allowed to feed on either glucose solution, commercially-available flowers or field collected flowers. In addition, we collected mosquitoes from the field to compare those crop metabolomes with metabolome patterns occurring after nectar feeding in the lab. The sugar quantities and quality obtained from the crops of mosquitoes collected in the field were similar to those crops obtained from mosquitoes that fed on commercially-available flowers and from field collected flowers with a limit of detection of 10 µg/L for sucrose, glucose and sucrose. Next to sugar compounds, we identified 2 types of amino acids, 12 natural products, and 9 pesticides. Next to the diversity of sugar compounds, we could confirm that secondary metabolites and environmental pollutants are typically up taken from floral nectar sources by C. pipiens. The in-depth knowledge on mosquito-plant interactions may inspire the development and further optimization of mosquito trap systems and arboviral surveillance systems.

3.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416036

RESUMO

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Assuntos
Depsipeptídeos , Vírus da Influenza A Subtipo H1N1 , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Interleucina-6/farmacologia , Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Citocinas/metabolismo , SARS-CoV-2/metabolismo
4.
Front Immunol ; 14: 1291972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124756

RESUMO

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Mesocricetus , COVID-19/prevenção & controle , Vacinas contra COVID-19
5.
Proc Biol Sci ; 290(1998): 20230403, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132238

RESUMO

Response diversity increases the potential 'options' for ecological communities to respond to stress (i.e. response capacity). An indicator of community response diversity is the diversity of different traits associated with their capacity to be resistant to stress, to recover and to regulate ecosystem functions. We conducted a network analysis of traits using benthic macroinvertebrate community data from a large-scale field experiment to explore the loss of response diversity along environmental gradients. We elevated sediment nutrient concentrations (a process that occurs with eutrophication) at 24 sites (in 15 estuaries) with varying environmental conditions (water column turbidity and sediment properties). Macroinvertebrate community response capacity to nutrient stress was dependent on the baseline trait network complexity in the ambient community (i.e. non-enriched sediments). The greater the complexity of the baseline network, the less variable the network response to nutrient stress was; in contrast, more variable responses to nutrient stress occurred with simpler networks. Thus, stressors or environmental variables that shift baseline network complexity also shift the capacity for these ecosystems to respond to additional stressors. Empirical studies that explore the mechanisms responsible for loss of resilience are essential to inform our ability to predict changes in ecological states.


Assuntos
Ecossistema , Sedimentos Geológicos , Sedimentos Geológicos/análise , Biota , Estuários , Eutrofização , Monitoramento Ambiental
6.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778292

RESUMO

Autophagy is a critical modulator of pathogen invasion response in vertebrates and invertebrates. However, how it affects mosquito-borne viral pathogens that significantly burden public health remains underexplored. To address this gap, we use a genetic approach to activate macroautophagy/autophagy in the yellow fever mosquito (Aedes aegypti), infected with a recombinant Sindbis virus (SINV) expressing an autophagy activator. We first demonstrate a 17-amino acid peptide derived from the Ae. aegypti autophagy-related protein 6 (ATG-6/beclin-1-like protein) is sufficient to induce autophagy in C6/36 mosquito cells, as marked by lipidation of ATG-8 and puncta formation. Next, we engineered a recombinant SINV expressing this bioactive beclin-1-like peptide and used it to infect and induce autophagy in adult mosquitoes. We find that modulation of autophagy using this recombinant SINV negatively regulated production of infectious viruses. The results from this study improve our understanding of the role of autophagy in arboviruses in invertebrate hosts and also highlight the potential for the autophagy pathway to be exploited for arboviral control.

7.
J Virol ; 97(1): e0177822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598200

RESUMO

Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, Alphavirus) and Zika virus (Flaviviridae, Flavivirus) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission. Aedes aegypti mosquitoes were able to be infected with and transmit both pathogens simultaneously. However, whereas Mayaro virus was largely unaffected by coinfection, it had a negative impact on infection and dissemination rates for Zika virus compared to single infection scenarios. Superinfection of Mayaro virus atop a previous Zika virus infection resulted in increased Mayaro virus infection rates. At the cellular level, we found that mosquito and vertebrate cells were also capable of being simultaneously infected with both pathogens. Similar to our findings in vivo, Mayaro virus negatively affected Zika virus replication in vertebrate cells, displaying complete blocking under certain conditions. Viral interference did not occur in mosquito cells. IMPORTANCE Epidemiological and clinical studies indicate that multiple arboviruses are cocirculating in human populations, leading to some individuals carrying more than one arbovirus at the same time. In turn, mosquitoes can become infected with multiple pathogens simultaneously (coinfection) or sequentially (superinfection). Coinfection and superinfection can have synergistic, neutral, or antagonistic effects on viral infection dynamics and ultimately have impacts on human health. Here we investigate the interaction between Zika virus and Mayaro virus, two emerging mosquito-borne pathogens currently circulating together in Latin America and the Caribbean. We find a major mosquito vector of these viruses-Aedes aegypti-can carry and transmit both arboviruses at the same time. Our findings emphasize the importance of considering co- and superinfection dynamics during vector-pathogen interaction studies, surveillance programs, and risk assessment efforts in epidemic areas.


Assuntos
Aedes , Infecções por Alphavirus , Coinfecção , Superinfecção , Infecção por Zika virus , Animais , Humanos , Aedes/virologia , Alphavirus , Infecções por Alphavirus/complicações , Infecções por Alphavirus/virologia , Mosquitos Vetores/virologia , Vertebrados/virologia , Zika virus , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia
8.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711723

RESUMO

Wolbachia pipientis (=Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB did not influence MAYV infection. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.

9.
Am J Trop Med Hyg ; 108(2): 412-423, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535260

RESUMO

Despite its ecological flexibility and geographical co-occurrence with human pathogens, little is known about the ability of Anopheles albimanus to transmit arboviruses. To address this gap, we challenged An. albimanus females with four alphaviruses and one flavivirus and monitored the progression of infections. We found this species is an efficient vector of the alphaviruses Mayaro virus, O'nyong-nyong virus, and Sindbis virus, although the latter two do not currently exist in its habitat range. An. albimanus was able to become infected with Chikungunya virus, but virus dissemination was rare (indicating the presence of a midgut escape barrier), and no mosquito transmitted. Mayaro virus rapidly established disseminated infections in An. albimanus females and was detected in the saliva of a substantial proportion of infected mosquitoes. Consistent with previous work in other anophelines, we find that An. albimanus is refractory to infection with flaviviruses, a phenotype that did not depend on midgut-specific barriers. Our work demonstrates that An. albimanus may be a vector of neglected emerging human pathogens and adds to recent evidence that anophelines are competent vectors for diverse arboviruses.


Assuntos
Alphavirus , Anopheles , Arbovírus , Vírus Chikungunya , Animais , Feminino , Humanos , Alphavirus/genética , Anopheles/genética , Mosquitos Vetores , Vírus Chikungunya/genética , Vírus O'nyong-nyong
10.
Front Microbiol ; 13: 1016201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458182

RESUMO

Rodents are widely used for the development of COVID-19-like animal models, the virological outcome being determined through several laboratory methods reported in the literature. Our objective was to assess the agreement between methods performed on different sample types from 342 rodents experimentally infected with SARS-CoV-2 (289 golden Syrian hamsters and 53 K18-hACE2 mice). Our results showed moderate agreement between methods detecting active viral replication, and that increasing viral loads determined by either RT-qPCR or infectious viral titration corresponded to increasing immunohistochemical scores. The percentage of agreement between methods decreased over experimental time points, and we observed poor agreement between RT-qPCR results and viral titration from oropharyngeal swabs. In conclusion, RT-qPCR and viral titration on tissue homogenates are the most reliable techniques to determine the presence and replication of SARS-CoV-2 in the early and peak phases of infection, and immunohistochemistry is valuable to evaluate viral distribution patterns in the infected tissues.

11.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215156

RESUMO

Mayaro virus (MAYV) is an emerging New World alphavirus (genus Alphavirus, family Togaviridae) that causes acute multiphasic febrile illness, skin rash, polyarthritis and occasional severe clinical phenotypes. The virus lifecycle alternates between invertebrate and vertebrate hosts. Here we characterize the replication features, cell entry, lifecycle and virus-related cell pathology of MAYV using vertebrate and invertebrate in vitro models. Electron-dense clathrin-coated pits in infected cells and reduced viral production in the presence of dynasore, ammonium chloride and bafilomycin indicate that viral entry occurs through pH-dependent endocytosis. Increase in FITC-dextran uptake (an indicator of macropinocytosis) in MAYV-infected cells, and dose-dependent infection inhibition by 5-(N-ethyl-N-isopropyl) amiloride (a macropinocytosis inhibitor), indicated that macropinocytosis is an additional entry mechanism of MAYV in vertebrate cells. Acutely infected vertebrate and invertebrate cells formed cytoplasmic or membrane-associated extracytoplasmic replication complexes. Mosquito cells showed modified hybrid cytoplasmic vesicles that supported virus replication, nucleocapsid production and maturation. Mature virus particles were released from cells by both exocytosis and budding from the cell membrane. MAYV replication was cytopathic and associated with induction of apoptosis by the intrinsic pathway, and later by the extrinsic pathway in infected vertebrate cells. Given that MAYV is expanding its geographical existence as a potential public health problem, this study lays the foundation for biological understanding that will be valuable for therapeutic and preventive interventions.


Assuntos
Alphavirus , Culicidae , Alphavirus/genética , Amilorida/farmacologia , Cloreto de Amônio , Animais , Biologia , Clatrina , Vertebrados
12.
PLoS Negl Trop Dis ; 16(6): e0010507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35763539

RESUMO

Mayaro virus (MAYV) is an arboviral pathogen in the genus Alphavirus that is circulating in South America with potential to spread to naïve regions. MAYV is also one of the few viruses with the ability to be transmitted by mosquitoes in the genus Anopheles, as well as the typical arboviral transmitting mosquitoes in the genus Aedes. Few studies have investigated the infection response of Anopheles mosquitoes. In this study we detail the transcriptomic and small RNA responses of An. stephensi to infection with MAYV via infectious bloodmeal at 2, 7, and 14 days post infection (dpi). 487 unique transcripts were significantly regulated, 78 putative novel miRNAs were identified, and an siRNA response is observed targeting the MAYV genome. Gene ontology analysis of transcripts regulated at each timepoint shows a number of proteases regulated at 2 and 7 dpi, potentially representative of Toll or melanization pathway activation, and repression of pathways related to autophagy and apoptosis at 14 dpi. These findings provide a basic understanding of the infection response of An. stephensi to MAYV and help to identify host factors which might be useful to target to inhibit viral replication in Anopheles mosquitoes.


Assuntos
Infecções por Alphavirus , Alphavirus , Anopheles , Arbovírus , MicroRNAs , Alphavirus/genética , Infecções por Alphavirus/genética , Animais , Anopheles/fisiologia , Arbovírus/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma
13.
Vet Pathol ; 59(4): 613-626, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34955064

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease, but it can also affect other organs including the central nervous system. Several animal models have been developed to address different key questions related to Coronavirus Disease 2019 (COVID-19). Wild-type mice are minimally susceptible to certain SARS-CoV-2 lineages (beta and gamma variants), whereas hACE2-transgenic mice succumb to SARS-CoV-2 and develop a fatal neurological disease. In this article, we aimed to chronologically characterize SARS-CoV-2 neuroinvasion and neuropathology. Necropsies were performed at different time points, and the brain and olfactory mucosa were processed for histopathological analysis. SARS-CoV-2 virological assays including immunohistochemistry were performed along with a panel of antibodies to assess neuroinflammation. At 6 to 7 days post inoculation (dpi), brain lesions were characterized by nonsuppurative meningoencephalitis and diffuse astrogliosis and microgliosis. Vasculitis and thrombosis were also present and associated with occasional microhemorrhages and spongiosis. Moreover, there was vacuolar degeneration of virus-infected neurons. At 2 dpi, SARS-CoV-2 immunolabeling was only found in the olfactory mucosa, but at 4 dpi intraneuronal virus immunolabeling had already reached most of the brain areas. Maximal distribution of the virus was observed throughout the brain at 6 to 7 dpi except for the cerebellum, which was mostly spared. Our results suggest an early entry of the virus through the olfactory mucosa and a rapid interneuronal spread of the virus leading to acute encephalitis and neuronal damage in this mouse model.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Doenças dos Roedores , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/patologia , COVID-19/veterinária , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/veterinária , Peptidil Dipeptidase A/metabolismo , Doenças dos Roedores/patologia , SARS-CoV-2
14.
Mar Pollut Bull ; 171: 112662, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34242955

RESUMO

On July 16, 2010, a pipeline explosion spilled 1500 tons of crude oil into the Port of Dalian, China. To identify taxa responses to the spill, we exploited seven years of monitoring data to examine the co-occurrence of taxon pairs and the variation of the macrobenthic community. Non-parametric correlation analysis was used to construct interaction networks of relationships between oil spill contaminants and macrobenthic taxa. We observed that the impacted macrobenthic community not restored before 2016. The tolerance/sensitivity of taxa was inconsistent with the studies of oil impacts in other locations. We suggest revision of the ecological group classification of Sabellidae, Lumbrineridae, Terebellidae, Sternaspidae, and Spionidae. The variation in the frequency of coexistence indicates the potential impact of oil spill pollution on resource occupation. The interaction network involving macrobenthic families and stressors associated with the oil spill highlights how different macrobenthic families respond to different combinations of stressors.


Assuntos
Poluição por Petróleo , Petróleo , Poliquetos , Animais , Baías , Sedimentos Geológicos , Humanos , Poluição por Petróleo/análise
15.
Ecol Evol ; 11(11): 6091-6103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141205

RESUMO

Despite a long history of disturbance-recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft-sediment ecosystems encompass a range of heterogeneity from simple low-diversity habitats with limited biogenic structure, to species-rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance-recovery potential using seafloor patch-disturbance experiments conducted in two different soft-sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi-scale disturbance-recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape-scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch-scale disturbances.

16.
Emerg Microbes Infect ; 10(1): 797-809, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33825619

RESUMO

Reinfections with SARS-CoV-2 have already been documented in humans, although its real incidence is currently unknown. Besides having a great impact on public health, this phenomenon raises the question of immunity generated by a single infection is sufficient to provide sterilizing/protective immunity to a subsequent SARS-CoV-2 re-exposure. The Golden Syrian hamster is a manageable animal model to explore immunological mechanisms able to counteract COVID-19, as it recapitulates pathological aspects of mild to moderately affected patients. Here, we report that SARS-CoV-2-inoculated hamsters resolve infection in the upper and lower respiratory tracts within seven days upon inoculation with the Cat01 (G614) SARS-CoV-2 isolate. Three weeks after the primary challenge, and despite high titres of neutralizing antibodies, half of the animals were susceptible to reinfection by both identical (Cat01, G614) and variant (WA/1, D614) SARS-CoV-2 isolates. However, upon re-inoculation, only nasal tissues were transiently infected with much lower viral replication than those observed after the first inoculation. These data indicate that a primary SARS-CoV-2 infection is not sufficient to elicit a sterilizing immunity in hamster models but protects against lung disease.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Reinfecção/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/patologia , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Humoral , Imuno-Histoquímica , Masculino , Testes de Neutralização , SARS-CoV-2/genética , Carga Viral , Replicação Viral
17.
PLoS Negl Trop Dis ; 14(12): e0008870, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301456

RESUMO

Rift Valley fever phlebovirus (RVFV) causes an emerging zoonotic disease and is mainly transmitted by Culex and Aedes mosquitoes. While Aedes aegypti-dengue virus (DENV) is the most studied model, less is known about the genes involved in infection-responses in other mosquito-arboviruses pairing. The main objective was to investigate the molecular responses of Cx. pipiens to RVFV exposure focusing mainly on genes implicated in innate immune responses. Mosquitoes were fed with blood spiked with RVFV. The fully-engorged females were pooled at 3 different time points: 2 hours post-exposure (hpe), 3- and 14-days post-exposure (dpe). Pools of mosquitoes fed with non-infected blood were also collected for comparisons. Total RNA from each mosquito pool was subjected to RNA-seq analysis and a de novo transcriptome was constructed. A total of 451 differentially expressed genes (DEG) were identified. Most of the transcriptomic alterations were found at an early infection stage after RVFV exposure. Forty-eight DEG related to immune infection-response were characterized. Most of them were related with the RNAi system, Toll and IMD pathways, ubiquitination pathway and apoptosis. Our findings provide for the first time a comprehensive view on Cx. pipiens-RVFV interactions at the molecular level. The early depletion of RNAi pathway genes at the onset of the RVFV infection would allow viral replication in mosquitoes. While genes from the Toll and IMD immune pathways were altered in response to RVFV none of the DEG were related to the JAK/STAT pathway. The fact that most of the DEG involved in the Ubiquitin-proteasome pathway (UPP) or apoptosis were found at an early stage of infection would suggest that apoptosis plays a regulatory role in infected Cx. pipiens midguts. This study provides a number of target genes that could be used to identify new molecular targets for vector control.


Assuntos
Culex/virologia , Interações Hospedeiro-Patógeno , Vírus da Febre do Vale do Rift/fisiologia , Animais , Evolução Biológica , Culex/imunologia , Regulação da Expressão Gênica/imunologia , RNA Viral , Transcriptoma
18.
Parasit Vectors ; 13(1): 210, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321560

RESUMO

BACKGROUND: Recent studies demonstrate that insect-specific viruses can influence the ability of their mosquito hosts to become infected with and transmit arboviruses of medical and veterinary importance. The aim of this study was to evaluate the interactions between Anopheles gambiae densovirus (AgDNV) (Parvoviridae) (a benign insect-specific virus that infects An. gambiae mosquitoes) and Mayaro virus (MAYV) (Togaviridae) (an emerging human pathogen that can be transmitted by An. gambiae) in both insect cell culture and mosquitoes. METHODS: For in vitro studies, An. gambiae Mos55 cells infected or uninfected with AgDNV were infected with MAYV. For in vivo studies, An. gambiae mosquitoes were injected intrathoracically with AgDNV and 4 days later orally infected with MAYV. Mosquitoes were dissected 10 days after MAYV infection, and MAYV titers in the body, legs and saliva samples quantified using focus-forming assay. RESULTS: MAYV virus replication was reduced 10-100-fold in An. gambiae Mos55 cells infected with AgDNV. In mosquitoes, there was a significant negative correlation between AgDNV and MAYV body titers 10 days post-blood meal. CONCLUSIONS: AgDNV infection was associated with reduced production of MAYV in cell culture, and reduced body titers of MAYV in An. gambiae mosquitoes. As densovirus infections are common in natural mosquito populations, these data suggest that they may affect the epidemiology of viruses of medical importance.


Assuntos
Alphavirus/fisiologia , Anopheles/virologia , Densovirus/fisiologia , Mosquitos Vetores/virologia , Replicação Viral , Animais , Anopheles/citologia , Linhagem Celular , Feminino , Larva/citologia , Larva/virologia
19.
20.
Glob Chang Biol ; 25(10): 3539-3548, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31273894

RESUMO

Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e., metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow-water habitats: sandy soft-bottoms, marine vegetation, and rocky reef substrates. Primary producers and detritus-key food sources for meiofauna-increased in biomass under the combined effect of temperature and acidification. The enhanced bottom-up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present-day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast-growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , Biomassa , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...